The Mazer lab tests predictions and develops hypotheses concerning the process and outcome of evolution by natural selection in wild plant species. In our current work, we’re examining the causes and consequences of the evolution of plant mating behaviors (yes, plants behave!). The "mating system" of wild plant and animal populations refers to the ways in which sperm and egg unite within and between individuals. In plants, outcrossing occurs when pollen is transferred (often by insects or by wind) from one plant's flowers to another's. In contrast, self-fertilization (selfing) is an extreme form of inbreeding that occurs when a single plant pollinates itself; the united egg and sperm originate from the same individual! Just as in humans and other animals, inbreeding in plants can have harmful effects on their offspring. Nevertheless, the evolution of selfing (from outcrossing ancestors) is quite common in plants. Indeed fully 20-25% of living plant species regularly engage in selfing. Detecting the “costs” and “benefits” of self-fertilization — especially in a stressful and changing climate, where pollinators may become a highly limiting resource — and predict the ecological conditions under which selfing evolves are the central goals of our research.
We would like to recruit undergraduates into the Mazer lab to help with a supervised research project on mating system evolution in several species of the California native wildflower, Clarkia. Undergraduate researchers will work with Professor Mazer, graduate students, postdocs, other undergraduates in the lab to learn a variety of lab, greenhouse, and computing techniques that we’ve developed to study:
1) The physiological performance of selfers vs. outcrossers under stressful conditions
2) Genetically based associations between mating system, physiology, and fitness
3) The ways in which natural selection operates under field conditions
Time Commitment: 8-10 hours per week, including a weekly meeting. Students who work for at least two full quarters will be eligible for paid positions in future quarters (pending available funding).
Current Lab Members:
• Dr. Susan Mazer, Principal Investigator (mazer@lifesci.ucsb.edu)
• Dr. Leah Dudley, Post-doc (dudley@lifesci.ucsb.edu)
• Alisa Hove: PhD Student (hove@lifesci.ucsb.edu)
• Brian Haggerty: PhD Student (haggerty@lifesci.ucsb.edu)
Please contact Leah Dudley (dudley@lifesci.ucsb.edu) if you are interested in joining our research group. Also describe why you are interested in this project and what preparation you’ve had that might help you to be an excellent co-worker (Examples: course work in ecology or evolution, organizational skills, statistical experience, data entry, lab work, chemistry, camping, wilderness experience, or field work). We will meet
Tuesday, January 4, 2010, the first week of the new quarter in LSB 4301 2-3pm to introduce ourselves and chat about schedules and possible projects. However, please contact me beforehand if you are interested in the lab and especially if you cannot make it to this meeting time.
Senin, 06 Desember 2010
Evolutionary Ecology Internship Opportunities in the Mazer Lab
Langganan:
Posting Komentar (Atom)
0 komentar:
Posting Komentar